Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation

نویسندگان

  • Karthik Natarajan
  • Chung-Piaw Teo
  • Zhichao Zheng
چکیده

In this paper, we analyze mixed 0-1 linear programs under objective uncertainty. The mean vector and the second-moment matrix of the nonnegative objective coefficients are assumed to be known, but the exact form of the distribution is unknown. Our main result shows that computing a tight upper bound on the expected value of a mixed 0-1 linear program in maximization form with random objective is a completely positive program. This naturally leads to semidefinite programming relaxations that are solvable in polynomial time but provide weaker bounds. The result can be extended to deal with uncertainty in the moments and more complicated objective functions. Examples from order statistics and project networks highlight the applications of the model. Our belief is that the model will open an interesting direction for future research in discrete and linear optimization under uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Zero-one Linear Programs under Objective Uncertainty: a Completely Positive Representation

In this paper, we analyze mixed 0-1 linear programs under objective uncertainty. The mean vector and the second moment matrix of the nonnegative objective coefficients is assumed to be known, but the exact form of the distribution is unknown. Our main result shows that computing a tight upper bound on the expected value of a mixed 0-1 linear program in maximization form with random objective is...

متن کامل

Using Bit Representation to Improve LP Relaxations of Mixed-Integer Quadratic Programs

A standard trick in integer programming is to replace each bounded integer-constrained variable with a small number of binary variables, using the bit representation of the given variable. We show that, in the case of mixed-integer quadratic programs (MIQPs), this process can enable one to obtain stronger linear programming relaxations. Moreover, we give a simple sufficient condition under whic...

متن کامل

A New Compromise Decision-making Model based on TOPSIS and VIKOR for Solving Multi-objective Large-scale Programming Problems with a Block Angular Structure under Uncertainty

This paper proposes a compromise model, based on a new method, to solve the multi-objective large-scale linear programming (MOLSLP) problems with block angular structure involving fuzzy parameters. The problem involves fuzzy parameters in the objective functions and constraints. In this compromise programming method, two concepts are considered simultaneously. First of them is that the optimal ...

متن کامل

A Reformulation-Linearization Technique (RLT) for semi-infinite and convex programs under mixed 0-1 and general discrete restrictions

The Reformulation-Linearization Technique (RLT) provides a hierarchy of relaxations spanning the spectrum from the continuous relaxation to the convex hull representation for linear 0-1 mixed-integer and general mixed-discrete programs. We show in this paper that this result holds identically for semi-infinite programs of this type. As a consequence, we extend the RLT methodology to describe a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Operations Research

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2011